Сейчас. Физика времени
Сжатие движущегося тела я тоже мог наблюдать в своей лаборатории, хотя и не с такой ясностью, как замедление времени. Когда мы сталкиваем пион с протоном, в системе отсчета пиона протон становится совсем не круглым. Он приобретает форму очень тонкого блина толщиной в 1/637 части своего диаметра, то есть больше похожим на тонкую ткань (типа крепа). Это изменение формы протона оказывает серьезное воздействие на рассеивание пиона, которое я наблюдал.
В земной системе отсчета пион был меньшей из двух частиц. Так какая же из них была меньше в реальности, пион или протон? Ответ – обе, в зависимости от системы отсчета. В собственной СО пиона двигался протон, и он был меньше. В собственной СО протона двигался пион, и меньше был он. Все наблюдатели во всех системах отсчета сходятся в этом. В теории относительности наблюдатели никогда не расходятся в определении длины объекта больше, чем в определении его скорости. Скорость относительна. Точно так же относительны временные интервалы. Точно так же относительна форма.
Эксперимент Майкельсона−Морли
Большинство известных дискуссий о теории относительности начинается с описания эксперимента, проведенного американскими физиками Альбертом Майкельсоном [42] и Эдвардом Морли [43] в 1887 году. До сих пор неясно, в какой степени результаты этого эксперимента повлияли на Альберта Эйнштейна. Он упоминает о нем лишь в своих поздних работах. Создается впечатление, что его теория относительности базировалась прежде всего на теории электромагнетизма Максвелла и свойствах этой теории, выведенных Лоренцем.
Майкельсон и Морли сделали исключительно точное измерение скорости света в направлении движения Земли вокруг Солнца и перпендикулярном ему направлении. Цель состояла в обнаружении «эфирного ветра». Ученые выяснили, что скорость распространения света в обоих направлениях была одинаковой, несмотря на движение Земли. Они нашли лишь 1/40-ю долю той разницы в скорости света, которую ожидали увидеть. То есть, по существу, никакой разницы.
Современные эксперименты подтвердили, что скорость света постоянна, независимо от направления вращения Земли. При этом точность измерений достигла 0,01 микрона в секунду. В действительности точность измерений была настолько высока, что ее дальнейшее повышение потребовало бы внесения изменений в определение того, что мы подразумеваем под одним метром в метрической системе. Чтобы избежать каких-либо противоречий, в настоящее время скорость света официально определена в 299 792 458 м/с, а длина метра определяется как расстояние, которое луч света преодолевает за 1/299 792 458 секунды. Это означает, что известное значение скорости света больше не уточняется. Можно только технически повысить точность измерения длины метра. Полезно также запомнить, что свет распространяется со скоростью около 0,3048 м/нс (нс, наносекунда – одна миллиардная доля секунды) с точностью до 1,5 %.
Постоянство скорости света достаточно легко объясняется теорией относительности, как я показываю в Приложении 1. Но это обстоятельство можно повернуть на 180°. В начальных курсах физики преподаватели иногда выводят уравнения теории относительности, начав с тезиса о постоянстве скорости света и показывая потом, что релятивистские уравнения – единственные, которые линейны по отношению ко времени и пространству и которые могут дать этот результат. Студентом я никогда не любил этот метод, потому что считал представление о линейности искусственным. На самом деле это не так, но мне, второкурснику, было трудно принять принцип «линейности», так что все вычисления казались натянутыми.
E = mc²
Самой известной формулой XX века считается формула Эйнштейна об эквивалентности массы и энергии: E = mc². В настоящее время она настолько известна, что трудно даже представить, насколько абсурдной она казалась, когда была впервые сформулирована Эйнштейном. Он опубликовал ее во второй статье, посвященной теории относительности, в 1905 году, через три месяца после первой.
Формула выглядела нелепой. В соответствии с ней любая масса, даже такая, которой обладают абсолютно несжигаемые субстанции типа камня или воды, содержит в себе огромную энергию. После подстановки в формулу показателя с² получались чудовищные значения. Скорость света, с, – это 300 000 000 м/с. Возведите это число в квадрат, и вы получите 90 000 миллионов миллионов. Другими словами, 90 квадриллионов. К тому же Эйнштейн не дал никаких указаний относительно того, как можно извлечь всю эту энергию для полезного использования. Он просто констатировал, что она есть. Если вы не могли освободиться от массы, такая энергия была бесполезна. В то время понятие массы считалось непреложным. Масса «сохранялась», она не могла быть создана или уничтожена. Таким образом, формула Эйнштейна выглядела одновременно и абсурдной, и бессмысленной.
Ученый говорил, что, в принципе, энергия эквивалентна массе. Вы можете представить себе массу как «связанную в узел энергию». Когда, сжигая бензин и воздух, вы получаете тепло, масса дымов (состоящих в основном из углекислого газа и пара) будет несколько меньше массы сожженной бензиново-воздушной смеси из-за истраченной энергии (той энергии, которая использована на придание движения вашему автомобилю). Энергия, помимо прочего, уходит на разогрев воздуха и покрытия дороги (сила трения), в результате чего они станут несколько тяжелее, потому что «впитают» в себя энергию.
Формула E = mc² подразумевает использование физических единиц (джоулей, килограммов, метров в секунду). Я попробую переписать ее в наших повседневных единицах измерения. Килограмм массы – это примерно 2,2 фунта. 1 киловатт-час энергии (кВт/ч) эквивалентен 3,6 млн джоулей. Формулу Эйнштейна можно представить еще и так:
Энергия = mc² = 11 млрд кВт/ч в фунте массы.
В США средняя стоимость электроэнергии равна 10 центам за 1 киловатт-час. Так что один фунт любой массы, переведенный в электрическую энергию, стоил бы более миллиарда долларов.
Другой способ представить эту формулу – измерить энергию в бензиновом эквиваленте. Сколько ее будет содержаться в массе одного галлона бензина (3,79 л). Вот как будет выглядеть формула:
Энергия = mc² = 2 млрд галлонов (в бензиновом эквиваленте) в одном галлоне бензина.
Это означает, что энергии в массе бензина содержится в 2 миллиарда раз больше, чем получается от сжигания той же массы. В США розничная цена бензина колеблется, но если, для примера, ее взять равной $3 за галлон, то в одном галлоне бензина содержится энергии на $6 млрд. А в Европе – на еще большую сумму.
Требовалось ли от Эйнштейна мужество, чтобы в начале XX века опубликовать подобные, явно нелепые, выводы? Сегодня, когда мы знакомы с мирной ядерной энергией и чудовищной разрушительной силой атомных бомб, эти заключения и расчеты не кажутся фантастическими. Но в начале 1900-х годов доказательств существования этих невероятных масс энергии еще не было – кроме того, что в процессе радиоактивного распада атом высвобождал энергию в миллион раз больше, чем при участии в химической реакции. Должен был существовать доселе неизвестный источник гигантской энергии, и Эйнштейн нашел его – это масса. Но утверждения великого ученого требовали либо отчаянной смелости, либо уверенности в том, что он раскрыл фундаментальную правду о массе. Создается впечатление, что превалировал второй фактор.
Каким образом Эйнштейн вывел уравнения об энергии из уравнений времени и пространства? Его метод был достаточно простым. Он задумался: какое влияние окажут наши представления о времени и пространстве на законы механики? Ньютон в свое время решил, что объект, испытывающий на себе силу F, приобретет ускорение а по формуле F = ma. Мы называем это вторым законом Ньютона. (Его первый закон, гласящий, что движущийся объект будет сохранять свое прямолинейное движение или останется в состоянии покоя, есть лишь частный случай для второго закона, при силе F, равной нулю.)