Краткая история времени. От большого взрыва до черных дыр
себе дуализм волна-частица. Фейнман ввел так называемое суммирование по траекториям. В этом подходе в отличие от классической, неквантовой теории нет предположения о том, что частица должна иметь одну-единственную траекторию в пространстве-времени, а наоборот, считается, что частица может перемещаться из А в Б по любому возможному пути. С каждой траекторией связаны два числа: одно из них описывает размеры волны, а другое отвечает ее положению в цикле (гребень или впадина). Чтобы определить вероятности перехода из А в Б, надо сложить волны для всех этих траекторий. Если сравнить между собой несколько соседних траекторий, то их фазы, или положения в цикле, будут сильно различаться. Это значит, что волны, соответствующие таким траекториям, будут почти полностью гасить друг друга. Однако для некоторых семейств соседних траекторий фазы при переходе от траектории к траектории будут мало меняться, и соответствующие им волны не скомпенсируют друг друга. Такие траектории относятся к боровским разрешенным орбитам.Основываясь на таких представлениях, записанных в конкретном математическом виде, можно было по сравнительно простой схеме вычислить разрешенные орбиты для более сложных атомов и даже для молекул, состоящих из нескольких атомов, которые держатся вместе за счет электронов, чьи орбиты охватывают больше одного ядра. Поскольку строение молекул и происходящие между ними реакции являются основой всей химии и всей биологии, квантовая механика в принципе позволяет предсказать все, что мы видим вокруг себя, с точностью, которую допускает принцип неопределенности. (Правда, на практике расчеты систем, содержащих много электронов, оказываются настолько сложными, что произвести их просто невозможно).
Крупномасштабная структура Вселенной, по-видимому, подчиняется общей теории относительности Эйнштейна. Эта теория называется классической, потому что в ней не учитывается квантово-механический принцип неопределенности, который необходимо учитывать для согласования с другими теориями. Мы же не вступаем в противоречие с результатами наблюдений из-за того, что все гравитационные поля, с которыми обычно приходится иметь дело, являются очень слабыми. Однако, согласно теоремам о сингулярности, о которых говорилось выше, гравитационное поле должно становиться очень сильным по крайней мере в двух ситуациях: в случае черных дыр и в случае большого взрыва. В таких сильных полях должны быть существенными квантовые эффекты. Следовательно, классическая общая теория относительности, предсказав точки, в которых плотность становится бесконечной, в каком-то смысле сама предрекла свое поражение в точности так же, как классическая (т. е. неквантовая) механика обрекла себя на провал заключением о том, что атомы должны коллапсировать, пока их плотность не станет бесконечной. У нас еще нет полной теории, в которой общая теория относительности была бы непротиворечиво объединена с квантовой механикой, но зато мы знаем кое-какие свойства будущей теории. О том, что вытекает из этих свойств в отношении черных дыр и большого взрыва, мы поговорим в последующих главах. А сейчас займемся самыми последними попытками объединения наших представлений обо всех других силах природы в одну, единую квантовую теорию.
5. Элементарные частицы и силы в природе
Аристотель считал, что вещество во Вселенной состоит из четырех основных элементов – земли, воздуха, огня и воды, на которые действуют две силы: сила тяжести, влекущая землю и воду вниз, и сила легкости, под действием которой огонь и воздух стремятся вверх. Такой подход к строению Вселенной, когда все делится на вещество и силы, сохраняется и по сей день.
По Аристотелю, вещество непрерывно, т. е. любой кусок вещества можно бесконечно дробить на все меньшие и меньшие кусочки, так и не дойдя до такой крошечной крупинки, которая дальше бы уже не делилась. Однако некоторые другие греческие философы, например Демокрит, придерживались мнения, что материя по своей природе имеет зернистую структуру и все в мире состоит из большого числа разных атомов (греческое слово «атом» означает неделимый). Проходили века, но спор продолжался без всяких реальных доказательств, которые подтверждали бы правоту той или другой стороны. Наконец, в 1803 г. английский химик и физик Джон Дальтон показал, что тот факт, что химические вещества всегда соединяются в определенных пропорциях, можно объяснить, предположив, что атомы объединяются в группы, которые называются молекулами. Однако до начала нашего века спор между двумя школами так и не был решен в пользу атомистов. В разрешение этого спора очень важный вклад внес Эйнштейн. В своей статье, написанной в 1905 г., за несколько недель до знаменитой работы о специальной теории относительности, Эйнштейн указал на то, что явление, носящее название броуновского движения, – нерегулярное, хаотическое движение мельчайших частичек, взвешенных в воде, – можно объяснить ударами атомов жидкости об эти частички.
К тому времени уже имелись некоторые основания подумывать о том, что и атомы тоже не неделимы. Несколькими годами раньше Дж. Дж. Томсон из Тринити-колледжа в Кембридже открыл новую частицу материи – электрон, масса которого меньше одной тысячной массы самого легкого атома. Экспериментальная установка Томсона немного напоминала современный телевизионный кинескоп. Раскаленная докрасна металлическая нить служила источником электронов. Поскольку электроны заряжены отрицательно, они ускорялись в электрическом поле и двигались в сторону экрана, покрытого слоем люминофора. Когда электроны падали на экран, на нем возникали вспышки света. Вскоре стало понятно, что эти электроны должны вылетать из атомов, и в 1911 г. английский физик Эрнст Резерфорд наконец доказал, что атомы вещества действительно обладают внутренней структурой: они состоят из крошечного положительно заряженного ядра и вращающихся вокруг пего электронов. Резерфорд пришел к этому выводу, изучая, как отклоняются альфа-частицы (положительно заряженные частицы, испускаемые атомами радиоактивных веществ) при столкновении с атомами.
Вначале думали, что ядро атома состоит из электронов и положительно заряженных частиц, которые назвали протонами (от греческого слово «протос» – первичный), потому что протоны считались теми фундаментальными блоками, из которых состоит материя. Однако в 1932 г. Джеймс Чедвик, коллега Резерфорда по Кембриджскому университету, обнаружил, что в ядре имеются еще и другие частицы – нейтроны, масса которых почти равна массе протона, но которые не заряжены. За это открытие Чедвик был удостоен Нобелевской премии и выбран главой Конвилл-энд-Кайус-колледжа Кембриджского университета (колледж, в котором я сейчас работаю). Потом ему пришлось отказаться от этого поста из-за разногласий с сотрудниками. В колледже постоянно происходили ожесточенные споры, которые начались с тех пор, как после войны группа вернувшейся молодежи проголосовала против того, чтобы старые сотрудники оставались на своих должностях, которые они уже много лет занимали. Все это происходило еще до меня; я начал работать в колледже в 1965 г. и застал самый конец борьбы, когда другой глава колледжа, нобелевский лауреат Невилл Мотт, вынужден был тоже уйти в отставку.
Еще лет двадцать назад протоны и нейтроны считались «элементарными» частицами, но эксперименты по взаимодействию протонов и электронов, движущихся с