Краткая история времени. От большого взрыва до черных дыр
значения, так как тогда оно имело бы и точное значение (нуль), и точную скорость изменения (тоже нуль). Должна существовать некоторая минимальная неопределенность в величине поля – квантовые флуктуации. Эти флуктуации можно себе представить как пары частиц света или гравитации, которые в какой-то момент времени вместе возникают, расходятся, а потом опять сближаются и аннигилируют друг с другом. Такие частицы являются виртуальными, как частицы, переносящие гравитационную силу Солнца: в отличие от реальных виртуальные частицы нельзя наблюдать с помощью детектора реальных частиц. Но косвенные эффекты, производимые виртуальными частицами, например небольшие изменения энергии электронных орбит в атомах, можно измерить, и результаты удивительно точно согласуются с теоретическими предсказаниями. Принцип неопределенности предсказывает также существование аналогичных виртуальных пар частиц материи, таких, как электроны или кварки. Но в этом случае один член пары будет частицей, а второй – античастицей (античастицы света и гравитации – это то же самое, что и частицы).Поскольку энергию нельзя создать из ничего, один из членов пары частица – античастица будет иметь положительную энергию, а второй – отрицательную. Тот, чья энергия отрицательна, может быть только короткоживущей виртуальной частицей, потому что в нормальных ситуациях энергия реальных частиц всегда положительна. Значит, он должен найти своего партнера и с ним аннигилировать. Но, находясь рядом с массивным телом, реальная частица обладает меньшей энергией, чем вдали от него, так как для того, чтобы преодолеть гравитационное притяжение тела и удержаться вдали от него, нужна энергия. Обычно энергия частицы все-таки положительна, но гравитационное поле внутри черной дыры так велико, что даже реальная частица может иметь там отрицательную энергию. Поэтому, если имеется черная дыра, виртуальная частица с отрицательной энергией может упасть в эту черную дыру и превратиться в реальную частицу или античастицу. В этом случае она уже не обязана аннигилировать со своим партнером, а покинутый партнер может либо упасть в ту же черную дыру, либо, если его энергия положительна, выйти из области вблизи черной дыры как реальная частица или как античастица (рис. 7.4). Удаленному наблюдателю покажется, что этот партнер испущен из черной дыры. Чем меньше черная дыра, тем меньше расстояние, которое придется пройти частице с отрицательной энергией до превращения в реальную частицу, и, следовательно, тем больше скорость излучения и кажущаяся температура черной дыры.
Положительная энергия испускаемого излучения должна уравновешиваться потоком частиц с отрицательной энергией, направленным в черную дыру. Согласно уравнению Эйнштейна Е = mc^2 (где Е – энергия, m – масса, а с – скорость света), энергия прямо пропорциональна массе, а поэтому поток отрицательной энергии, входящий в черную дыру, уменьшает ее массу. Когда черная дыра теряет массу, площадь ее горизонта событий уменьшается, но это уменьшение энтропии черной дыры с лихвой возмещается энтропией испущенного излучения, так что второй закон термодинамики никогда не нарушается.
Кроме того, чем меньше масса черной дыры, тем выше ее температура. Поэтому, когда черная дыра теряет массу, ее температура и скорость излучения возрастают, и, следовательно, потеря массы идет еще быстрее. Пока еще не совсем ясно, что происходит, когда масса черной дыры в конце концов становится чрезвычайно малой, но наиболее логичным представляется, что черная дыра полностью исчезает в гигантской последней вспышке излучения, эквивалентной взрыву миллионов водородных бомб.
Температура черной дыры с массой, равной нескольким массам Солнца, должна быть равна всего одной десятимиллионной градуса выше абсолютного нуля. Это гораздо меньше, чем температура микроволнового излучения, заполняющего Вселенную (около 2,7ш выше абсолютного нуля). Следовательно, черные дыры должны излучать даже меньше, чем поглощать. Если Вселенной суждено вечно расширяться, то температура микроволнового излучения в конце концов упадет ниже температуры такой черной дыры и черная дыра начнет терять массу. Но и тогда ее температура будет настолько низкой, что она полностью испарится лишь через миллион миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов миллионов (единица с шестьюдесятью шестью нулями) лет. Это значительно превышает возраст Вселенной, который равен всего десяти или двадцати тысячам миллионов лет (единица или двойка с десятью нулями). Но, как говорилось в гл. 6, могли существовать первичные черные дыры с гораздо меньшей массой, образовавшиеся в результате коллапса нерегулярностей на очень ранних стадиях развития Вселенной. Такие черные дыры должны иметь гораздо более высокую температуру и испускать излучение с гораздо большей интенсивностью. Время жизни первичной черной дыры с начальной массой тысяча миллионов тонн должно быть примерно равно возрасту Вселенной. Первичные черные дыры с меньшими начальными массами должны были бы уже полностью испариться, а те, у которых начальные массы чуть-чуть больше, должны продолжать испускать рентгеновское и гамма-излучение. Эти виды излучения аналогичны световым волнам, но имеют гораздо меньшую длину волны. К подобным дырам едва ли подходит название черные: на самом деле они раскалены добела и излучают энергию с мощностью около десяти тысяч мегаватт.
Одна такая черная дыра могла бы обеспечить работу десяти крупных электростанций, если бы только мы умели использовать ее энергию. А это довольно трудно: наша черная дыра имела бы массу, равную массе горы, сжатую примерно до одной миллион миллионной (единица, деленная на миллион миллионов) сантиметра, т. е. до размеров атомного ядра! Если бы одна из таких черных дыр оказалась на поверхности Земли, то мы никак не могли бы предотвратить ее падение сквозь пол к центру Земли. Она колебалась бы взад-вперед вдоль земной оси до тех пор, пока в конце концов не остановилась бы в центре. Следовательно, единственное место для этой черной дыры, где излучаемую ею энергию можно было бы использовать, – это орбита вокруг Земли, а единственный способ привлечь черную дыру на эту орбиту – буксировать перед ней огромную массу, как морковку перед самым носом осла. Такое предложение выглядит не слишком реальным, по крайней мере в ближайшем будущем.
Но даже если мы не сможем использовать излучение этих первичных черных дыр, то велика ли возможность их увидеть? Можно было бы искать гамма-излучение, которое черные дыры испускают на протяжении большей части своей жизни. Несмотря на то что черные дыры в основном находятся далеко и поэтому дают очень слабое излучение, суммарное излучение всех черных дыр могло бы поддаваться регистрации. Мы действительно наблюдаем фон такого гамма-излучения: на рис. 7.5 показано, как интенсивности наблюдаемых гамма-лучей различаются при разных частотах (частота – это число волн в секунду). Но источником этого фона могли быть, а может быть, и были не первичные черные дыры, а какие-нибудь другие процессы. На рис. 7.5 пунктиром представлена вычисленная зависимость интенсивности от частоты гамма-излучения, испускаемого первичными черными дырами, при плотности 300 черных дыр на кубический