Гидравлика
4. Гидростатическое давление и его свойства
Общие дифференциальные уравнения равновесия жидкости – уравнения Л. Эйлера для гидростатики.
Если взять цилиндр с жидкостью (покоящейся) и провести через него линию раздела, то получим жидкость в цилиндре из двух частей. Если теперь приложить некоторое усилие к одной части, то оно будет передаваться другой через разделяющую плоскость сечения цилиндра: обозначим эту плоскость S = w.
Если саму силу обозначить как то взаимодействие, передаваемое от одной части к другой через сечение Δw, и есть гидростатическое давление.
Если оценить среднее значение этой силы,
Рассмотрев точку А как предельный случай w, определяем:
Если перейти к пределу, то Δw переходит в точку А.
Поэтому Δpx→ Δpn. В конечном результате px = pn, точно так же можно получить py = pn, pz = pn.
Следовательно,
py = pn, pz = pn.
Мы доказали, что во всех трех направлениях (их мы выбрали произвольно) скалярное значение сил одно и то же, то есть не зависит от ориентации сечения Δw.
Вот это скалярное значение приложенных сил и есть гидростатическое давление, о котором говорили выше: именно это значение, сумма всех составляющих, передается через Δw.
Другое дело, что в сумме (px + py + pz) какая-то составляющая окажется равной нулю.
Как мы в дальнейшем убедимся, в определенных условиях гидростатическое давление все же может быть неодинаково в различных точках одной и той же покоящейся жидкости, т. е.
p = f(x, y, z).
Свойства гидростатического давления.
1. Гидростатическое давление всегда направлено по нормали к поверхности и его величина не зависит от ориентации поверхности.
2. Внутри покоящейся жидкости в любой точке гидростатическое давление направлено по внутренней нормали к площадке, проходящей через эту точку.
Причем px = py = pz = pn.
3. Для любых двух точек одного и того же объема однородной несжимаемой жидкости (ρ = const)
ρ1 + ρП1 = ρ2 + ρП1
где ρ – плотность жидкости;
П1, П2 – значение поле массовых сил в этих точках.
Поверхность, для любых двух точек которой давление одно и то же, называется поверхностью равного давления.
5. Равновесие однородной несжимаемой жидкости под воздействием силы тяжести
Это равновесие описывается уравнением, которое называется основным уравнением гидростатики.
Для единицы массы покоящейся жидкости
Для любых двух точек одного и того же объема, то
Полученные уравнения описывают распределение давления в жидкости, которая находится в равновесном состоянии. Из них уравнение (2) является основным уравнением гидростатики.
Для водоемов больших объемов или поверхности требуется уточнения: сонаправлен ли радиусу Земли в данной точке; насколько горизонтальна рассматриваемая поверхность.
Из (2) следует
p = p + ρg(z – z), (4)
где z1 = z; p1 = p; z2 = z; p2 = p.
p = p + ρgh, (5)
где ρgh – весовое давление, которое соответствует единичной высоте и единичной площади.
Давление р называют абсолютным давлением pабс.
Если р > pабс, то p – pатм = p + ρgh – pатм – его называют избыточным давлением:
pизч = p < p, (6)
если p < pатм, то говорят о разности в жидкости
pвак = pатм – p, (7)
называют вакуумметрическим давлением.
6. Законы Паскаля. Приборы измерения давления
Что произойдет в других точках жидкости, если приложим некоторое усилие Δp? Если выбрать две точки, и приложить к одной из них усилие Δp1, то по основному уравнению гидростатики, во второй точке давление изменится на Δp2.
откуда легко заключить, что при равности прочих слагаемых должно быть
Δp1= Δp2. (2)
Мы получили выражение закона Паскаля, который гласит: изменение давления в любой точке жидкости в равновесном состоянии передается во все остальные точки без изменений.
До сих пор мы исходили из предположения, что ρ = const. Если иметь сообщающийся сосуд, который заполнен двумя жидкостями с ρ1≠ ρ2, причем внешнее давление p= p1= pатм, то согласно (1):
ρ1gh = ρ2gh, (3)
откуда
где h1, h2 – высота от раздела поверхности до соответствующих свободных поверхностей.
Давление – физическая величина, которая характеризует силы, направленные по нормали к поверхности одного предмета со стороны другого.
Если силы распределены нормально и равномерно, то давление
где – F суммарная приложенная сила;
S – поверхность, к которой приложена сила.
Если силы распределены неравномерно, то говорят о среднем значении давления или считают его в отдельно взятой точке: например, в вязкой жидкости.
Приборы для измерения давления
Одним из приборов, которым измеряют давление, является манометр.
Недостатком манометров является то, что у них нее большой диапазон измерений: 1—10 кПа.
По этой причине в трубах используют жидкости, которые «уменьшают» высоту, например, ртуть.
Следующим прибором для измерения давления является пьезометр.
7. Анализ основного уравнения гидростатики
Высоту напора принято называть пьезометрической высотой, или напором.
Согласно основному уравнению гидростатики,
p1+ ρghA= p2+ ρghH,
где ρ – плотность жидкости;
g – ускорение свободного падения.
p2, как правило, задается p2= pатм, поэтому, зная hА и hH, нетрудно определить искомую величину.
2. p1= p2= pатм. Совершенно очевидно, что из ρ = const, g = const следует, что hА= hH. Этот факт называют также законом сообщающихся сосудов.
3. p1< p2= pатм.
Между поверхностью жидкости в трубе и ее закрытым концом образуется вакуум. Такие приборы называют вакуумметры; их используют для измерения давлений, которые меньше атмосферного.
Высота, которая и является характеристикой изменения вакуума: