Предсказание прошлого. Расцвет и гибель допотопной цивилизации
Что мы видим? Точку, в которой заключен целый мир. Ряд непростых физических вычислений показывает, что замкнутая вселенная внешним наблюдателем может восприниматься как объект очень малого размера и крохотной массы (какая бы огромная масса ни была заключена внутри вселенной). При этом любопытно, что если такая система оказывается изначально электрически заряженной, то она не сможет стать полностью закрытой. Иными словами, в ней можно «нарезать» все большие и большие сферы только до определенного радиуса, за которым наступит предел, который Марков называет «горловиной».
Куда ведет эта горловина? И что будет дальше, если мы и за пределами горловины упрямо продолжим проводить сферы все большего радиуса? А тогда с ростом радиуса площадь сферы перестанет падать и вновь начнет расти. Из одной вселенной мы переберемся в другую. При этом из новой вселенной старая будет восприниматься как микроскопический заряженный объект – например, электрон.
Представьте себе два соприкасающихся шара. Точка их соприкосновения и есть горловина. Она же – элементарная частица «в глазах» другого шара. То есть каждый шар «ощущает» другой только точкой.
Эти частицы-горловины назвали фридмонами в память о российско-советском физике Александре Фридмане, развившем эйнштейновские идеи на базе предположения о нестационарной Вселенной. (Поначалу, кстати, Эйнштейн с выводами Фридмана не согласился, но потом признал свою ошибку и правоту Фридмана.)
Марков пишет о фридмонах:
«Их метрика становится метрикой закрытого мира Фридмана при заряде, стремящемся к нулю. Фридмон может включать в себя целую вселенную, со всеми своеобразиями этих ультрамакроскопических образований, но минимальное количество материи, которая может образовать фридмон, – это около 10–5–10–6 грамма.
Не исключено, что подобные объекты могут возникать не только из рассматриваемых фридмановских систем, возмущенных присутствием электрического заряда. Любой другой специфический заряд – источник любого векторного поля (ß-, φ-, ω-мезонные поля, и т. д.) – может быть виновником возникновения такой почти закрытой системы с микроскопической полной массой, микроскопическим конечным специфическим зарядом и микроскопическими внешними размерами.
Таким образом, в рамках общей теории относительности могут реализовываться системы с внешними микроскопическими параметрами (массой, зарядом, размерами) и внутренней структурой, которая представляется ультрамакроскопическим миром. Поражает возможность существования… автоматизма в образовании фридмонных ансамблей тождественных частиц.
Если бы Господь Бог по своему произволу начал творить вселенные с критической плотностью, вселенные, различные по числу галактик, по уровню существующих цивилизаций, по полному электрическому заряду, то через некоторое время Творец увидел бы вместо различных вселенных ансамбль тождественных микроскопических частиц – электростатических фридмонов…
Таким образом, перед нами объекты микромира типа элементарных частиц с удивительной внутренней макроскопической структурой. Возникает вопрос: не являются ли все так называемые элементарные частицы различными видами фридмонов?..
Но, отождествляя элементарные частицы с фридмонными системами, мы вступаем на путь гипотетических утверждений, с которыми пока не можем сопоставить соответствующую теорию элементарных частиц, хотя априори нельзя утверждать, что подобная теория принципиально не может быть построена. В случае успеха мы обладали бы в высшей степени последовательной концепцией всего сущего».
И далее автор заключает:
«Хотелось бы подчеркнуть, что, анализируя возможность существования таких объектов, мы не строили каких-то специфических гипотез, а исследовали различные ситуации в строгих рамках современной теории. Исследовали такие ситуации, для которых характерна не нарочитая надуманность и исключительность, а, наоборот, автоматизм возникновения и в данных условиях своего рода неизбежность…
С точки зрения изложенного выше не исключено, что окружающий нас мир представляет собой некий фридмон (вернее, фридмон в состоянии антиколлапса, в состоянии так называемой “белой дыры”). Это значило бы возможность существования “внешнего” по отношению к нашему фридмону пространства, с которым наш мир связан через горловинную сферу микроскопических размеров. Это значило бы, что для наблюдателя в “том пространстве” в его экспериментах наша Вселенная представляется объектом микроскопически малой массы с микроскопически малыми размерами».
…Оригинальная теория, спору нет. Но к чему был этот экскурс в физику середины ХХ века н. э.? А к тому, что тот же Анаксагор из V века до н. э. говорил: в каждой самой маленькой частице материи «существуют города, населенные людьми, обработанные поля, и светят солнце, луна и другие звезды, как у нас». Это он откуда узнал?
Ответ прост, и дал его Демокрит, который писал, что научные воззрения Анаксагора не придуманы лично им, а заимствованы у древних. Демокрит знал, что говорит! Его самого считают родоначальником атомистической теории (то есть теории о том, что все вещество состоит из атомов). При этом известно, что Демокрит учился у египтян. А кроме Египта он побывал в Индии и Вавилоне. И везде ума набирался… Возможно, именно в Индии ему рассказали, что все сущее состоит из мельчайших круглых частичек, которые, собираясь в различных сочетаниях друг с другом, образуют разные вещества. Люди смертны, но частицы эти вечны, после смерти человека они могут собраться в новое существо… А от египтян Демокрит узнал про истинное соотношение размеров Солнца и Земли (что Солнце больше Земли, несмотря на то что кажется маленьким) и про то, что Млечный Путь – не просто блеклая размазанная полоса на небе, а скопление гигантского количества звезд.
А вот Плутарху в Египте рассказали, что Луна составляет 1/72 долю от массы Земли. (Между прочим, европейцы вычислили соотношение масс Земли и ее спутника только в XVIII веке. Лаплас тогда показал, что Луна в 75 раз легче.)
В начале нашей эры, уже перед самым наступлением христианства (на науку!), греки выдвинули идею о множественности обитаемых миров. Задолго до Джордано Бруно. Они даже придумали теорию «кипящих вселенных»: «Следует полагать, что не только существуют одновременно многие миры, но и до начала нашей Вселенной существовали многие вселенные, а по окончании ее будут другие миры».
Греки действительно были очень умные. Но они стояли на плечах гигантов. Это во-первых. А во-вторых, все высокие достижения античности были забыты во времена средневекового одичания. Но быстро возникли вновь после нескольких столетий упадка и деградации – едва в них появилась практическая нужда. Средневековье забыло, Средневековье обрело…
И дальше мы видим уже сплошной неукротимый прогресс… Который быстро повторяет то, что уже было раньше. В XIII веке в Толедо открывается первая в Европе обсерватория. Любопытно, что в обсерватории этой плечом к плечу работали иудеи, мусульмане и христиане, и плодом их совместных усилий пользовались потом две сотни лет… Появляется целая плеяда гениев – Николай Кузанский, Джордано Бруно, Коперник, Кеплер, Тихон Браге, Ньютон, Эйнштейн…
Ой, Галилея забыл!.. Галилей изобрел телескоп, если кто запамятовал. Хотя за две тысячи лет до Галилея полированными стеклянными линзами баловались в Древнем Вавилоне.
К XV веку для повышения точности астрономических вычислений были рассчитаны новые тригонометрические таблицы – синусов и тангенсов. И если раньше затмения (читай: положения небесных тел) можно было предсказывать с точностью плюс-минус час, то теперь – с точностью до минут. И это была не избыточная точность, а точность для практической пользы… Что же вызвало к жизни бурный рост и расцвет точных наук в Европе? Какая практическая нужда?
Мореплавание! Только оно – главный потребитель астрономии и высокой математики. Астрономия на самом деле очень практичная вещь. Можно, конечно, говорить, что она была нужна древним для гадания и отправления таинственных религиозных культов. Но естественнее предположить, что астрономия была нужна для мореплавания в открытом океане… Точно так же можно сказать, что кофе нужен людям для гадания, а можно – что для питья. Выбор точки зрения оставляю на ваш вкус… А для лучшего усвоения вкусного сообщу, что именно эти, исправленные, тригонометрические таблицы синусов и тангенсов использовали при открытии Америки Колумб и Америго Веспуччи.