Жизнь и ее проявления
Гетеротрофные организмы в процессе ассимиляции используют воду и минеральные элементы. Например, человеку для нормальной жизнедеятельности в сутки необходимо потреблять: хлористого натрия (поваренная соль) от 2 до 15 г, кальция — 1,2 г, магния — 0,3 г, фосфора — 1,5 г, кальция — 0,8 г, железа — 1,012 г, меди — 0,001 г, марганца — 0,0003 г, иода — 0,00003 г.
Кроме того, человек и животные нуждаются в витаминах, которые, как и минеральные элементы, гетеротрофные организмы получают с органической, главным образом растительной пищей.
Еще один способ питания
В природе существует несколько видов бактерий, которых называют хемосинтетиками. Называют их так потому, что энергию, необходимую для синтеза органических веществ, они получают путем окисления сравнительно простых неорганических веществ. Например, в почве имеется множество так называемых нитрифицирующих бактерий. Они окисляют аммиак до азотной кислоты. Аммиак — сильнейший яд для растений, а соли азотной кислоты — очень ценное питательное вещество. В результате такой «деятельности» и растениям хорошо, и сами нитрифицирующие бактерии получают для жизни около двухсот килокалорий энергии.
Серобактерии тоже очень ценная группа хемосинтетиков. Они окисляют ядовитый сернистый газ, образующийся при гниении органических остатков. После окисления получаются сера и вода. Эта реакция дает бактериям 115 килокалорий энергии для их жизнедеятельности. Серобактерии играют большую роль при очистке водоемов. Так, например, на больших глубинах Черного моря скапливаются огромные массы мертвых организмов, которые гниют, а образовавшийся при этом сероводород отравляет все живое в воде. Но этот ядовитый газ не поднимается до поверхности воды: на глубине 150–200 метров сплошным слоем живут серобактерии. Вот поэтому слой воды, располагающийся выше серобактерий, вполне пригоден для жизни водных животных.
Назовем еще одного представителя хемосинтетиков — это водородные бактерии, которые для построения органических веществ используют энергию, образующуюся при окислении водорода.
В настоящее время установлено, что хемосинтетики, как и другие микроорганизмы, играют колоссальную роль в геологической деятельности. Они принимают участие в разложении горных пород и образовании залежей полезных ископаемых. Ученым уже удалось воспроизвести некоторые геохимические процессы, осуществляемые микробами. С помощью серных бактерий, например, удается производить окисление серы в рудах, содержащих медь, и этим облегчается добыча меди. Серобактерии окисляют сероводород нефтяных или сточных вод, дают нам элементарную серу, так необходимую химической промышленности. Существуют бактерии, окисляющие марганец и железо. Бактерии стали в руках геологов чувствительными индикаторами, способными определять присутствие углеводородов в грунтах и почве. Это свойство микроорганизмов легло в основу разработанного в СССР микробиологического метода разведки на нефть и горные газы.
Итак, хемосинтетики, как и автотрофные организмы, сами строят органические вещества из неорганических. Но если автотрофным организмам для этого необходим свет, то хемосинтетики обходятся без света, получая энергию в процессе окисления неорганических веществ.
Можно найти много общего в способах ассимиляции и у других групп организмов. Так, например, миксотрофные организмы — насекомоядные растения — занимают как бы промежуточное звено между автотрофными и гетеротрофными организмами.
Эти обстоятельства дают основание считать, что все живые организмы, населяющие Землю, имеют единую принципиальную основу в процессах ассимиляции. Для всего живого питание — это строительный материал для организма и средство накопления энергии.
Окисление органических веществ — основа жизни
Органические вещества и заключенная в них энергия, образовавшаяся в клетках любого организма в процессе ассимиляции, претерпевают обратный процесс — диссимиляцию. При диссимиляции освобождается химическая энергия, которая в организме же превращается в различные формы энергии — механическую, тепловую и т. д. Освобожденная при диссимиляции энергия является той самой материальной основой, которая осуществляет все жизненные процессы — синтез органических веществ, саморегулирование организма, рост, развитие, размножение, реакции организма на внешние воздействия и другие проявления жизни.
Диссимиляция, или окисление, у живых организмов осуществляется двумя способами. У большинства растений, животных, человека и простейших организмов окисление органических веществ происходит с участием кислорода воздуха. Этот процесс получил название «дыхание», или аэробный (от лат. аэр — воздух) процесс. У некоторых групп растений, которые способны существовать без воздуха, окисление происходит без кислорода, то есть анаэробным путем, и называется брожением. Рассмотрим каждый из этих процессов в отдельности.
Понятие «дыхание» первоначально означало лишь вдыхание и выдыхание воздуха легкими. Затем «дыханием» стали называть обмен газами между клеткой и окружающей ее средой — потребление кислорода и выделение углекислоты. Дальнейшие углубленные исследования показали, что дыхание является очень сложным многоступенчатым процессом, который совершается в каждой клетке живого организма с обязательным участием биологических катализаторов — ферментов.
Органические вещества, прежде чем превратиться в «топливо», дающее энергию клетке и организму в целом, должны быть соответствующим образом обработаны с помощью ферментов. Эта обработка заключается в расщеплении крупных молекул биополимеров — белков, жиров, полисахаридов (крахмала и гликогена) — в мономеры. Тем самым достигается определенная универсализация питательного материала.
Таким образом, вместо многих сотен различных полимеров, например пищи, в кишечнике животных образуется несколько десятков мономеров — аминокислот, жирных кислот, глицерина и глюкозы, которые затем доставляются клеткам тканей животных и человека по кровеносным и лимфатическим путям. В клетках происходит дальнейшая универсализация этих веществ. Все мономеры превращаются в более простые молекулы карбоновых кислот с углеродной цепочкой, содержащей от двух до шести атомов. Если мономеров насчитывается несколько десятков, из них двадцать аминокислот, то карбоновых кислот всего десять. Так окончательно утрачивается специфика питательных веществ.
Но и карбоновые кислоты являются лишь предшественниками материала, который можно назвать «биологическим горючим». Они непосредственно еще не могут быть использованы в энергетических процессах клетки. Следующий этап универсализации — отщепление от карбоновых кислот водорода. При этом образуется углекислый газ (СО2), который организм выдыхает. Атом водорода содержит электрон и протон. Для энергетики клетки и организма в целом (биоэнергетики) роль этих составных частей атома далеко не равноценна. Энергия, заключенная в атомном ядре, недоступна для клетки. Превращение же электрона в атоме водорода сопровождается выделением энергии, которая используется в процессах жизнедеятельности клетки. Поэтому освобождением электрона заканчивается последний этап универсализации биологического топлива. В этот период специфика органических веществ, их составных частей и карбоновых кислот не имеет значения, ибо все они в конечном счете приводят к образованию носителя энергии — электрона.
Возбужденный электрон соединяется с кислородом. Приняв два электрона, кислород заряжается отрицательно, присоединяет два протона и образует воду. Так совершается акт клеточного дыхания.
Окисление органических веществ в клетках происходит в митохондриях, которые, как уже было отмечено в предыдущей брошюре, играют роль динамомашины, преобразующей энергию сгорания углеводов и жиров в энергию аденозинтрифосфорной кислоты (АТФ).
Окислению в организме подвергаются в первую очередь углеводы. Начальные и конечные процессы окисления углеводов можно выразить такой суммарной формулой: C6H12O6 + 6O2 = 6СO2 + 6Н2O + энергия.