Машина-двигатель От водяного колеса до атомного двигателя
Вернемся к цилиндру паровой машины.
Итак, расширившийся пар снизил свою температуру и свое давление. Очевидно, если удастся пар расширить, как говорят, глубже, до очень малых давлений, а следовательно, и температур, то работу этот пар произведет большую. Вот почему полезно ставить за паровой машиной конденсаторы. Снижая температуру выходящего пара до температуры, близкой к температуре охлаждающей воды, стало возможным получить очень малое давление в конденсаторе, равное 0,04 атмосферы. При этом в цилиндре паровой машины образуется тоже низкое конечное давление, при котором пар и поступает в конденсатор.
Как и указывал Карно, понижение температуры пара на выходе, осуществленное с помощью конденсатора, привело к лучшему использованию тепла. Паровые машины с конденсатором стали обладать более высоким коэффициентом полезного действия.
В современной паровой технике дальше понижать нижний температурный уровень уже затруднительно. И так в конденсаторе образуется почти пустота (0,04 атмосферы!). Поэтому сейчас обращено особое внимание на повышение начальных давлений и температур пара.
Оба эти пути, указанные Карно, помогли совершенствовать паровую машину. Но, кроме того, в размышлениях «отца термодинамики» содержались очень важные мысли и о том, как лучше подводить тепло к рабочему телу, как лучше расширять рабочее тело, как лучше отводить от него тепло на нижнем температурном уровне и как лучше вновь подготавливать рабочее тело к расширению. Карно предложил идеальный цикл тепловой машины, при котором во время перехода от верхнего температурного источника к охладителю тепло превращалось бы в максимально возможное количество механической работы и не терялось бы на теплообмен с окружающей средой.
Познакомимся же с этим идеальным циклом Карно, так как к нему стремятся приблизить циклы всех тепловых двигателей. По тому, как далеко отклоняется процесс превращения тепла в механическую работу в данном двигателе от процесса, предложенного Карно, судят о термодинамическом совершенстве такого двигателя.
Так можно было бы осуществить работу теплового двигателя по идеальному циклу, предложенному Карно.
Представим себе цилиндр с нагруженным поршнем. Грузом является песок, насыпанный в чашу. Внутри цилиндра находится «рабочее тело» — какой-либо газ.
Допустим, что стенки цилиндра и поршень сделаны из такого материала, который не пропускает тепло. Через донышко же цилиндра, которое сделано из теплопроводного материала, можно газ нагревать или охлаждать. Предположим далее, что у нас имеется два чугунных ящика с плитами. В первый ящик положены горячие угли, и плита нагрета до температуры T1. Во второй ящик положены куски льда, и плита охлаждена до температуры Т2. Подведем под цилиндр горячую плиту. Через некоторое время газ нагреется до температуры плиты T1 и займет некоторый начальный объем в цилиндре: поршень с полным грузом окажется на высоте I. Предположим, что вдоль вертикального движения чаши с песком поставлена колонка, разделенная полочками на ячейки. Сбросим в ячейку 1 немного песку. Поршень станет легче, и газы его приподнимут до полочки 2. При этом произойдет небольшое расширение и, следовательно, охлаждение газа; но, добавив немного угля в нашу жаровню, мы опять установим температуру Т1. Затем то же самое проделаем вновь — поршень поднимется до полочки 3, и так далее. Достигнув уровня, например, полочки 7, мы отведем горячую плиту, закроем донышко, чтобы не уходило из цилиндра тепло, и сбросим песок, не добавляя нового тепла. Поршень дойдет до полочки 8, но газ, теперь уже расширившись, несколько охладится, так как добавки тепла не поступает. Чтобы достигнуть полочки 9, нам придется сбросить на полочку 8 больше песка, чем сбрасывалось раньше, так как вместе с расширением и охлаждением начало значительно снижаться и давление газа. Достигнув полочки 9, мы сбросим вновь много песка. До полочки 10, где стоит упор верхнего крайнего положения, поршень дошел с небольшим грузом.
Первая часть расширения и работы газа по подъему поршня шла при неизменной температуре, равной температуре горячего источника. Такой процесс расширения называется в термодинамике «изотермическим» (при постоянной температуре). После того, как мы отняли горячий источник, расширение продолжалось, но без приема и без отдачи тепла (стенки изолированы). Такой процесс расширения называется адиабатическим.
Так мы совершили ход поршня вверх. Но всякая тепловая машина только тогда сможет стать двигателем, когда рабочее тело будет, совершив работу, возвращаться вновь в исходное состояние. Или, иными словами, тепловой двигатель должен работать по «замкнутому циклу», то есть непрерывно повторять расширение и сжатие рабочего тела.
Как же следует в нашем случае вернуть рабочее тело к исходному состоянию?
Предположим, что к концу расширения газ в цилиндре как раз охладился до температуры охладителя Т2. Поставим цилиндр на холодную плиту и немного ссыплем на чашу поршня с полочки 10 песку. Поршень станет тяжелее, и газ слегка сожмется. При этом температура газа начнет подниматься. Но охладитель не дает расти температуре, отводя какое-то количество тепла от газа. Затем с полочки 9 мы еще немного ссыплем на поршень песку — поршень спустится до полочки 8, а газ по прежнему останется при температуре Т2, отдавая излишнее тепло охладителю. Так мы совершим «изотермическое» сжатие, нагружая небольшими порциями песка поршень. Но вот, достигнув полочки 4, мы отведем холодную плиту, закроем донышко и станем насыпать большими порциями песок. Теперь газ начнет сжиматься, повышая свою температуру, так как тепло никуда отводиться не будет. Нам придется с нижних полочек вновь насыпать полную чашу песка, и только тогда мы вернем поршень в начальное положение I, подняв температуру газа до T1 и давление газа до его первоначального значения. Круг замкнется — цикл будет совершен. Начав от положения I, мы заставили поршень подняться до положения II и вновь вернуться в положение I.
Но в чем будет состоять полезная механическая работа, которую в этом случае мы получаем от тепла? Ведь, начав с полной чаши песка, мы вновь пришли к ней же!
Дело в том, что в результате такого цикла газ совершил полезную работу переноса песка снизу вверх: при изотермическом расширении надо немного песка ссыпать, а при изотермическом сжатии надо немного песка насыпать, и в результате на верхних полочках скапливается всё больше и больше песка, а на нижних песок убывает.
Этот цикл, с которым мы только что познакомились, осуществляется как раз так, как рекомендовал Карно: подводить тепло к рабочему телу надо изотермически, и рабочее тело должно при этом расширяться, совершая работу. Заканчивать свое расширение рабочее тело должно адиабатически, не передавая накопленное тепло через стенки цилиндра окружающей среде. Возвращать рабочее тело в исходное состояние надо, тоже вначале сжимая изотермически, отводя при этом тепло в охладитель, а затем заканчивая сжатие адиабатически.
Тогда, указывал Карно, тепло будет наилучшим образом использовано, а коэффициент полезного действия теплового двигателя будет зависеть только от разности температурных уровней.
В реальных тепловых двигателях, как мы дальше увидим, трудно выполнить цикл, похожий на этот, да и сам Карно не ожидал, что удастся точно так заставить работать паровую машину или другой двигатель. Но чем больше будет похож процесс в двигателе на цикл Карно, тем лучше он будет использовать тепло.
Можно ли всё тепло сгорания топлива использовать в тепловом двигателе? Нет. Даже в идеальном цикле Карно часть тепла отдается охладителю.
В большинстве тепловых двигателей совершает работу не один и тот же заряд рабочего тела. Пар, поступивший в цилиндр паровой машины, совершив работу, покидает этот цилиндр, а на его место при новом ходе поступит новый пар. Это обстоятельство также отличает реальные двигатели от идеального, но и тут остаются в силе главные направления, указанные Карно. Следуя этим направлениям, паровая техника к концу XIX века сделала огромные успехи.