Машина-двигатель От водяного колеса до атомного двигателя
Но для того, чтобы электромотор мог вырабатывать механическую энергию и приводить в движение рабочие машины, к нему нужно подвести электрический ток.
К сожалению, электрическая энергия в природе не находится в таком же свободном виде, как энергия воды или ветра, не может быть получена так же легко, как тепловая, путем сжигания топлива. Чтобы вырабатывать электрическую энергию, то есть получать электрический ток, обычно нужны специальные машины. Об этих машинах мы уже говорили в связи с гидротурбинами. Они называются, как нам уже известно, электрогенераторами. Внешне они похожи на электромоторы, только если электромоторы электрическую энергию превращают в механическую энергию вращения, то они, наоборот, механическую энергию вращения превращают в электрическую энергию.
Так, например, двигатель, о котором говорилось выше, можно было бы обратить в электрогенератор следующим образом.
Необходимо было бы по прежнему посылать ток только в обмотку статора. В обмотке ротора же, если ротор чем-либо привести во вращение, появился бы свой электрический ток. Ведь при вращении обмотка ротора пересекала бы магнитное поле статора и, что так же известно из физики, в витках этой обмотки возникал бы электрический ток.
Ток от ротора можно отводить и использовать для любых нужд, в том числе и для питания электродвигателей. Значит, чтобы выработать электрический ток, надо чем-то вращать вал электрогенератора. Полученный электрический ток будет использован в электромоторах, и вновь произойдет превращение электрической энергии в механическую.
Вот и выходит, что электромоторы не «самостоятельные» двигатели. Они именуются двигателями вторичными. Для выработки электрического тока всё равно нужны «первичные» двигатели, которые смогли бы вращать электрогенераторы, то есть нужны двигатели такие, как гидротурбина, паровая машина, паровая турбина или двигатель внутреннего сгорания, о котором будет сказано дальше.
Электромоторы же удобны тем, что, коль скоро электрическую энергию можно передавать по проводам на расстоянии, они могут стоять прямо возле каждого станка или каждой машины. Тут не требуется сложных передач — валов, шкивов, ремней и прочего, — с помощью которых передавалось бы движение на рабочие машины от любых других двигателей.
Способ приводить в движение каждую рабочую машину с помощью своего электромотора инженеры называют «индивидуальным приводом».
Итак, появившийся электромотор требовал создания станций, на которых бы вырабатывался электрический ток. Но, может быть, вам покажется слишком сложной такая комбинация из первичного двигателя, электрогенератора и вторичных двигателей — электромоторов? Быть может, вы считаете, что приводить рабочие машины по-старому, с помощью одного первичного двигателя, всё же проще, удобнее и дешевле?
Но не забудьте, что электрический ток потребовался не только для электромоторов. Ведь с 1875 года, после того, как на лондонской выставке наш русский инженер Павел Николаевич Яблочков продемонстрировал новый источник света — «электрическую свечу», электрическое освещение стало всё шире и шире распространяться по всему миру. Значит, нужно было вырабатывать ток и для освещения.
А потом всё больше и больше электричество стало входить и в промышленность, и в быт, и в транспорт.
Вопрос о создании электростанций с мощными первичными двигателями уже в конце XIX века стал одной из важнейших проблем техники. Электростанции строились в городах, при крупных заводах.
В 1882–1883 годах первая электростанция появилась и в России. Она была размещена на барже и стояла на реке Мойке, в Петербурге. Электрогенераторы приводились в движение шаровыми машинами. Мощность этой станции была всего 150 киловатт (204 лошадиных силы). Более совершенные и мощные электростанции появились в России в 1887–1888 годах.
Основной двигатель тепловых электростанций
Вы уже знаете, что для привода электрических генераторов можно использовать водяные двигатели — гидротурбины. Но нельзя забывать, что электрический ток хоть и можно передавать на расстояние, но не на любое, а на сравнительно небольшое, иначе в проводах будет потеряно много полезной энергии. Кроме того, не на всякой реке выгодно строить гидростанцию, — река должна быть полноводной, требуется водохранилище — озеро, из которого пополнялась бы река в периоды спада воды. Наконец, чтобы построить гидростанцию, надо выполнить большие работы по сооружению плотины, специального здания и так далее. Поэтому вместе с созданием гидростанций с конца XIX века широко развернулось строительство и теплостанций. Даже теперь, когда в нашей стране только за годы советской власти построено и введено в действие 90 гидростанций большой и средней мощности и множество мелких гидростанций, но еще до сих пор 80 % всей электроэнергии вырабатывают у нас тепловые электростанции. На этих электростанциях в качестве первичных двигателей используются двигатели тепловые.
Сначала таким двигателем служила паровая машина. Но вот, на пороге XX века, в 1900 году наступил перелом.
Заводу Парсонса были заказаны две турбины мощностью по 1000 киловатт каждая для электростанции немецкого города Эльберфельда. Этот заказ удивил очень многих, — в новый двигатель не верили; казалось, что паровая машина, проверенная практикой, надежнее.
Парсонс понимал ответственность и постарался особенно тщательно выполнить заказ. И действительно, испытания прошли успешно. Новый двигатель, правда, еще несколько уступал лучшим паровым машинам по экономичности, — он потреблял несколько больше пара на киловатт-час, но для привода электрогенератора оказался очень удобен: вращался равномерно, плавно; легко обслуживался.
С этих пор многие заводы Европы и Америки начали строить паровую турбину, и не прошло десятилетия, как она стала основным двигателем на тепловых электростанциях, крупных военных кораблях и даже на торговых морских судах.
Так, перешагнув порог XX века, паровая машина почти полностью уступила свое место другому паровому двигателю — турбине.
Современная паровая турбина в одном агрегате может развивать мощность до 200 000 и даже до 300 000 киловатт! Ни один поршневой двигатель на такие мощности не строится. И лишь гидравлическая турбина способна соревноваться с нею.
Паровой турбине и в будущем предстоит сыграть немаловажную роль. Она, наряду с газовой турбиной, позволит человеку использовать неисчерпаемый запас энергии, сосредоточенный в атомном ядре.
Современные турбины работают на паре высокой температуры и, значит, высокого давления. Они, как и рекомендовал Карно, используют более горячий «верхний источник тепла». При выходе пара из турбины ставят охлаждаемый водой конденсатор.
Одна из современных паровых турбин.
В директивах XX съезда КПСС по шестому пятилетнему плану имеется специальное указание о том, чтобы советские энергетики всемерно повышали начальные давления и температуру пара. В решениях сказано, чтобы широкое применение нашло паротурбинное оборудование, работающее при давлении пара в 130 атмосфер и температуре 565 °C. Но, кроме этого, директивами устанавливается необходимость освоения еще более высоких значений давления и температур — 220 атмосфер и 600 °C, а один агрегат должен быть введен в действие даже на 300 атмосфер при температуре 650 °C.
Директивами XX съезда дается задание нашей промышленности и по строительству мощных паровых турбин.
В Советском Союзе сейчас изготовляется много паровых турбин. Пока наиболее мощные из них могут развивать 150 тысяч киловатт. По заданию партии советские турбостроители создадут турбины на 200 тысяч и даже на 300 тысяч киловатт.
В шестой пятилетке значительно увеличится и количество выпускаемых нашей промышленностью турбин.
Один только Ленинградский Металлический завод увеличит к 1960 году выпуск турбин по сравнению с 1955 годом на 648 %.