Техника и человек в 2000 году
В одной из своих работ Эмо Дескович открывает интересные перспективы в области получения энергии путем разрушения атомов. Он указывает на то, что скорость эманации радия, иными словами — беспрерывно откалывающихся от радия частиц, позволяет им совершить путешествие вокруг экватора в 6 секунд. Где рекордные скорости наших снарядов? спрашивает Дескович. Здесь мы имеем скорость, в двадцать тысяч раз большую. Но величина живой силы растет пропорционально квадрату скорости. Эманация радия, скорость которой равна по величине скорости орудийного снаряда, способна была бы поэтому произвести в 400 млн раз большую работу. Что было бы, если бы эти силы можно было подчинить принципу полезной работы? Какой простор для изобретательной фантазии! Но не будем витать в облаках, останемся на почве реальных фактов. Чтобы получить возможность сравнения, нам, правда, в первую очередь придется обратиться к инструменту разрушения, а не к такому, который производит работу в тесном смысле этого слова. Работоспособность ружейной пули весом в 10 г достигает при выходе ее из ствола ружья приблизительно 300 кг-м. Это соответствует 4 л. с. Работоспособность пули весом в 1 г соответственно равнялась бы 30 кг-м или 0,4 л. с. В грамме эманации радия таится однако в 400 млн раз большая работоспособность, — в цифрах: 12 млрд кг-м или 160 млн л. с. Этой работы хватило бы, чтобы заставить пароход, снабженный машиной в 800 л. с. с грузом около 1 000 т, в течение 60 часов идти по воде со скоростью в 10 морских миль в час, — иными словами, перевезти 1 000 т груза — не считая веса самого парохода — на расстояние 600 морских миль или в круглых цифрах свыше 1 100 км. Такой пароход обычно потребляет за это время минимум 16 т угля.
В рамках рассматриваемой нами темы заслуживает внимания еще одна область, находящаяся в тесной связи с атомной теорией, именно теория относительности. Несколько странно, что эта теория до сих пор. нашла лишь очень слабое применение в технике, — более того, что наряду с теми, кто способен ее понять и усвоить, она со стороны других характеризуется как область, лишенная всякого значения для техники и энергетики. Из истории техники мы знаем, что успехи последней тесно связаны с прогрессом прикладного естествознания. Всякий раз, когда физика или химия обогащались новыми открытиями, можно было рассчитывать на открытие новых возможностей и в практической области и на повышение эффективности технических процессов. Усовершенствование автомобильного двигателя стало возможно лишь в тот момент, когда удалось добиться получения металлических сплавов, позволивших создать специальный сорт твердого железа. Число примеров легко может быть увеличено. Теория относительности, как будто очень далекая от практики, также чрезвычайно расширила наши познания. Как известно, физика с XIX века основывается на законе сохранения энергии и массы, впервые изложенной гейльброннским врачом Робертом Майером. Заслуга теории относительности в том именно и заключается, что она углубила понимание этих обоих принципов в степени, которая до того была невозможной. Ганс Доминик в статье «Грядущие проблемы техники» излагает этот вопрос следующим образом: «Теория относительности рассматривает оба физических понятия энергии и массы как проявления одной и той же основной причины, как явления, столь же одинаковые по существу, как, скажем, различные формы энергии, которые поэтому могут переходить одна в другую по закону определенных соотношений. Этот закон, связывающий энергию и массу, выражается простой формулой: Е = mc2. В этой формуле Е означает энергию в килограммометрах, m — массу в килограммах и с — скорость света в метрах в секунду. Скорость света равняется 300 млн м в секунду, и эта скорость в формуле входит во второй степени. Таким образом получается множитель в 90 000 триллионов, на который умножают массу, чтобы подсчитать количество энергии, вновь возникающее при ее распаде и бесследном исчезновении из мироздания. Как известно, мы получаем массу какого-либо тела, деля его вес на поверхности земли на ускорение силы тяжести земного притяжения. В виду того, что соответствующая постоянная составляет 9,81 м в секунду, иначе говоря — тело весом в 9,81 кг обладает массой в 1 кг, такое тело при распаде дало бы 90 000 триллионов кг-м».
Далее Доминик приводит очень интересный пример из области угольного хозяйства: «Наши современные паровые машины расходуют на лошадиную силу-час 1/2 кг угля. Час работы лошадиной силы равен 3 600 X 75, или 270 000 кг-м. Килограмм угля дает двойное количество энергии, иначе говоря — 540000 кг-м. Если мы хотим, исходя из этих соображений, вычислить количество каменного угля, которое нам необходимо сжечь под нашим паровыми котлами, чтобы получить в форме технически полезной работы то же количество энергии, какое освобождается при атомном распаде килограмма массы, то нам нужно разделить 90 000 триллионов на 540000, в результате наших выкладок мы получаем 167 млрд кг, или 167 млн т каменного угля. Это количество каменного угля приблизительно соответствует годовой добыче каменного угля в Германии. Физическая теория открывает здесь перед нами ошеломляющие перспективы. Если бы нам было возможно превратить в ничто какой-нибудь камень в 10 кг весом, мы, согласно этой теории, получили бы количество энергии, на которое нам потребовалась бы вся наша (Германии) годовая добыча каменного угля».
Как указывалось уже в другой главе этой книги, в последние годы удавалось также с помощью лабораторных опытов посредством электронов искусственно получать аммиак. Смесь из водорода и азота подвергалась бомбардировке электронами, в связи с чем получалось их соединение в аммиак. Этот процесс представляется следующим образом: металлическую проволоку накаляют, пропуская по ней электрический ток, при этом из накаленной проволоки начинают выделяться электроны, т. е. атомы отрицательного электричества. У поверхности проволоки они испаряются, подобно водяным молекулам на поверхности кипящей воды.
Рис. 14. Аппарат Бух-Андерсена для получения искусственного аммиака из элементов. G — вольфрамовая нить накаливания, B1 и B2 — батареи, А — платинов. пластинки, М — манометр, Р — соединение с насосом, V — соединение с резервуаром газа.
На рисунке G изображает вольфрамовую нить, по которой проходит ток из батареи B1, доводящий ее до каления. По обеим сторонам нити расположены платиновые пластинки А, соединенные с положительным полюсом батареи В1, тогда как ее отрицательный полюс соединен с накаленной проволокой. Исходящие из G электроны, в виду того, что они заряжены отрицательно, притягиваются положительно заряженными пластинками. Поэтому они движутся со значительной быстротой, которую можно еще более увеличить, повысив напряжение между А и G. Оба электрода впаяны герметически в стеклянный сосуд, который у Р соединен с насосом и у V с резервуаром газа. Трубка М ведет к манометру (измерителю давления). В реакционную камеру впускают такое количество тщательно очищенных газов водорода и азота, чтобы давление в нем составляло несколько десятых миллиметра. Если теперь довести проволоку до каления, то давление несколько повышается, что объясняется нагреванием газовой массы и испарением газов из нагретых частей сосуда. Через короткое время давление в сосуде снова станет постоянным. Теперь полюсы батареи В2 связываются с G и А, так что электроны, получив сильное ускорение, пронизывают газовую смесь. Давление падает, так как образуется аммиак. Если выключить батарею В2, то прекращается падение давления, а значит и образование аммиака, причем при новом включении батареи имевший место процесс возобновляется. Для того чтобы можно было непосредственно убедиться в образовании аммиака, в углублении С помещается немного серной кислоты, которая соединяется с аммиаком в сернокислый аммоний. Автор приведенной интересной схемы опыта приходит в конце концов к выводу, что его метод, еще не испытанный в широком техническом масштабе, потребует для своего осуществления много времени и средств.