Космос у тебя дома
И наоборот, если тело неподвижно, оно с места не сдвинется, и чтобы сдвинуть его, нужно применить определенную силу.
Итак, каждое тело обладает свойством сохранять то состояние, в котором оно находится, сохранять состояние покоя или прямолинейного равномерного движения, если никакая сила не заставит его остановиться или не отклонит в сторону.
А вот бытовые примеры, иллюстрирующие явление инерции.
Когда после домашней уборки вы вытряхиваете во дворе пыльную тряпку, обратите внимание, как из нее вылетает пыль.
Пыль стремительно вылетает из тряпки, когда вы бьете эту тряпку о что-нибудь, например о столб. При ударе тряпка резко останавливается, и пыль по инерции вылетает из нее.
Когда вы выливаете воду из стакана, вы совершаете быстрое движение рукой и внезапно останавливаете руку.
Вода по инерции движется дальше, выплескиваясь из стакана.
Когда вам нужно подготовить медицинский термометр для измерения температуры, его приходится несколько раз сильно встряхнуть. Тогда столбик ртути по инерции опустится вниз — в резервуар.
Наблюдая все, что происходит вокруг, вы можете сами привести еще много случаев инерции. Например, когда вы едете в трамвае, автобусе, троллейбусе и происходит внезапная, резкая остановка, вы испытываете толчок, как будто какая-то невидимая сила толкнула резко вас вперед.
Инерция широко используется и в промышленности и на транспорте. Перед тем как затормозить автомашину, обычно сначала отключают двигатель, и машина некоторое время движется по инерции. А когда большое судно подходит к пристани, винты уже не работают, и оно медленно движется по инерции, пока не встанет на свое место.
Иногда с инерцией приходится и бороться. Например, самолет, совершая посадку, хотя и летит по инерции, но скорость у него еще очень большая и ее приходится гасить специальными тормозными приспособлениями.
При возвращении космонавтов на Землю тоже приходится гасить скорость, прежде чем раскроется парашют.
Опыт движения «вверх ногами»
П. Н. Нестеров был выдающимся русским военным летчиком, основоположником высшего пилотажа. В 1913 году он впервые в мире выполнил на аэроплане фигуру, названную впоследствии его именем — «петля Нестерова». Аэроплан разгонялся, пикировал, затем с помощью руля круто поворачивался вверх носом, переворачивался на «спину», носом вниз, в результате чего получался замкнутый круг в вертикальной плоскости. Инерция играла большую роль в этом маневре.
В давние времена большим успехом у публики пользовался аттракцион с велосипедистом, который часть своего пути совершал колесами вверх. Дорожка, по которой исполнитель этого трюка мчался на большой скорости, съехав с большой высоты, образовывала петлю в вертикальной плоскости. В этой петле велосипедист описывал спираль. В верхней ее части он ехал вверх колесами, а затем благополучно съезжал вниз, вызывая вздох облегчения у публики.
Описанный номер очень напоминает петлю Нестерова.
Для успеха этого номера его исполнитель должен был обеспечить своему велосипеду большую скорость, а это можно было сделать, съезжая с определенной высоты. Отправная точка находилась значительно выше верхней точки петли. Движение велосипедиста в расположенном вертикально кольце похоже на вращение камня на веревке. Ведь камень, натягивая веревку, находясь в верхней точке описываемого круга, не срывается с нее. Также и велосипедист при большой скорости прижимается к своей кольцевой дорожке и не падает, когда едет по ней по инерции вверх колесами.
В нашем домашнем опыте не будет ни пилота, ни велосипедиста, их роль будет скромно выполнять стальной шарик (от шарикового подшипника).
Дорожку с вертикальной петлей нужно изготовить, исходя из размеров шарика, который у вас есть. Предположим, у вас есть стальной шарик диаметром 9 миллиметров. Возьмите плотную рисовальную бумагу или тонкий картон, вырежьте из нее полосу шириной 2,5 сантиметра и длиной 120 сантиметров (если такой длинной бумаги нет, можно склеить полосу из двух, трех кусков).
У бумажной полосы по всей ее длине загните бортики высотой 7 миллиметров. У вас получился длинный желоб. Теперь на одном из его концов сделайте петлю диаметром 8 сантиметров. Для того чтобы можно было согнуть петлю, от конца желоба на протяжении примерно 26 сантиметров в бортиках сделайте ножницами прорези через каждые 3–4 миллиметра. Когда вы согнете эту часть желоба, образовав правильную окружность, нужно, разведя немного (на ширину желоба) друг от друга концы петли, приклеить их к кусочку картона, чтобы они не расходились.
Теперь смонтируйте модель. Если вы приложите старание, то можно сделать красивую конструкцию и отнести ее в школьный физический кабинет как наглядное пособие.
Установите вертикально бумажную петлю. Конец девяностосантиметрового желоба закрепите на высоте (считая от основания петли) 40 сантиметров. Круто и плавно спускаясь, желоб должен тоже плавно переходить в петлю. К другому концу петли, так сказать, к ее выходному концу, приклейте такой же желоб, но длиной 20 сантиметров. На его конце сделайте из бумаги «карман» — ловушку для шарика, чтобы после каждого запуска не искать его по всей комнате.
Проследите, чтобы конструкция была достаточно жесткая, не прогибалась под тяжестью шарика, и чтобы дорога для шарика была плавная, ровная, без зазубрин и шероховатостей.
Когда все будет готово, можно пустить шарик с верхней точки желоба. Покатившись, шарик наберет нужную скорость, обеспечит себя инерцией, пройдет верхнюю точку петли, скатится по ней и закончит свой путь в ловушке.
Проделывая этот опыт, меняйте высоту, с которой запускаете шарик, и наблюдайте его поведение. Проследите, какая высота его запуска будет критической, то есть когда шарик не в состоянии будет пробежать по петле весь путь.
Этот опыт можно усовершенствовать — сделать еще одну петлю меньшего размера, тогда шарик будет пробегать две петли и после этого останавливаться в ловушке.
Лунный опыт
Часто мы употребляем слово масса, но не всегда правильно его истолковываем. Вот как очень образно говорит о массе Ю. А. Селезнев в книге «Основы элементарной физики»:
«К сожалению, неясность и нечеткость введения и использования понятия массы встречается очень часто. Иногда говорят о перетекании определенной массы жидкости из одного сосуда в другой, о подвешенной на нитке или лежащей на столе массе и пр. Подобные выражения не имеют никакого физического смысла и в немалой степени способствуют затуманиванию содержания понятия массы.
Масса тела — это прежде всего его свойство откликаться определенным ускорением на действие определенной силы. Утверждение, что масса тела — мера его инертности, имеет тот же смысл».
И далее: «Если масса — определенное свойство тела, то, как любое другое свойство, она не может „висеть“, „лежать“ или „перетекать“, ее нельзя потрогать или положить в карман. Никому не приходит в голову подвешивать на нитке белизну снега или прозрачность воды, а массу почему-то „подвешивают“!»
Для определения веса пользуются весами пружинными или коромысловыми. Единицей веса служит, как вы знаете, килограмм. Для определения массы тоже пользуются весами, но только коромысловыми весами, на которых сравнивают измеряемую массу с массой эталона в один килограмм.
Давайте совершим воображаемый опыт. Мы прилетели на Луну и привезли с собой пакет с шестью килограммами сахара. Взвешивая пакет с сахаром на Луне на пружинных весах, мы обнаруживаем, что у нас в пакете всего-навсего… один килограмм. Но если мы взвесим наш сахар не на пружинных, а на коромысловых весах, положив на одну чашку пакет с сахаром, а на другую шестикилограммовую гирю, то убедимся, что все в порядке — сахар не исчез. Уменьшился только вес, сахар стал в шесть раз легче, потому что Луна меньше Земли, ее сила притяжения меньше в шесть раз. Что же касается свойства пакета с сахаром откликаться на приложенное к нему ускорение, то есть его массы, то она никуда не исчезла, она точно такая же, как и на Земле.