Онтология математического дискурса
Проводимое далее доказательство, призванное показать реальность возможности обсуждаемого понятия, как раз и заключается в развертывании синтеза. Нам необходимо предъявить какую-либо построенную по правилам конструкцию, соответствующую понятию, реальная возможность которого доказывается. Конструкция должна быть сооружена в результате ряда действий, предписанных постулатами. Последовательность применения постулатов составляет схему рассматриваемого понятия, а возможность понятия будет установлена, когда будет завершено построение конструкции. Иными словами, возможность понятия будет установлена, когда мы предъявим соответствующий этому понятию единичный предмет, воспринимаемый чувствами. Чтобы более точно рассмотреть взаимодействие возможного и действительного при доказательстве, нам представляется уместным развернуть процедуру доказательства подробнее, описав ее в тех терминах, которые использовались еще в античности.
2 Структура доказательства у Евклида в связи с категориями модальности
Сейчас при изложении требующих доказательства предложений в математической литературе явно выделяются две части: формулировка предложения и его доказательство. Для античных авторов дело обстояло иначе. В изложении теоремы выделялось пять или шесть частей.(См. примечание 3)Этот способ структурирования процедуры доказательства оказывается очень уместным для правильного понимания соотношения возможного и действительного, а также общего и единичного в математическом рассуждении. Хинтикка [74] утверждает, что структура доказательства у Евклида явилась парадигмой для Канта.
Охарактеризуем кратко эти шесть частей изложения теоремы, используя в качестве примера упомянутую выше теорему о внутренних углах треугольника.
1. Утверждение (protasis) дает общую формулировку теоремы. В нашем случае эта первая часть теоремы выглядит так: сумма внутренних углов треугольника равна двум прямым.
2. Экспозиция (ekqesis) указывает на единичный предмет, общее понятие которого дано в утверждении. Для геометрии естественно в этой части теоремы дать чертеж.
Пусть ABC - произвольный треугольник.
3. Ограничение или детерминация (diorismos) состоит в переформулировании общего утверждения для представленного в экспозиции единичного предмета: сумма углов 1, 2 и 3 равняется двум прямым.
4. Построение (kataskeuh) - это то, что сейчас обычно называют дополнительным построением. В нашем случае оно выглядит так:
проведем через вершину B прямую, параллельную основанию AC. 5. Доказательство (apodeixis) представляет собой последовательность логических выводов об элементах конструкции, представленной в предыдущей части. Эта последовательность должна завершиться утверждением, представленном в части 3. Для рассматриваемой нами теоремы имеет место следующий ряд заключений.
Угол 1 равен углу 4, а угол 3 равен углу 5 как накрест лежащие при пересечении пары параллельных прямых третьей.
Углы 4, 2, 5 в сумме составляют один развернутый, а потому их сумма равна двум прямым.
Из двух этих утверждений следует, что сумма углов 1, 2 и 3 также равна двум прямым.
6. Заключение (sumperasma) обобщает вывод, полученный в доказательстве, повторяя формулировку первой части:
итак, сумма внутренних углов треугольника равна двум прямым. В предыдущем параграфе мы уже обсудили смысл утверждения теоремы. Оно содержит общее синтетическое суждение. Впрочем, назвать его в полном смысле синтетическим еще нельзя. Хотя оно и присоединяет предикат к субъекту, создавая тем самым новое понятие, синтез еще не проведен. У нас нет пока уверенности в том, что названное в protasis понятие соответствует формальным условиям опыта. Иными словами мы пока только предполагаем возможность понятия.
Ekqesis совершает переход от общего понятия к единичному объекту. С него начинается процедура конструирования. Вместо возможного треугольника (т.е. треугольника вообще) нам предстает действительный треугольник. Согласно Канту, такое выделение единичности составляет необходимый момент математического рассуждения. "..Математика ничего не может достигнуть посредством одних лишь понятий и тотчас спешит перейти к наглядному представлению, рассматривая понятие in concreto, однако не в эмпирическом наглядном представлении, а в таком, которое a priori установлено ею, т.е. конструировано, и в котором то, что следует из общих условий конструирования, должно иметь общее значение также и в отношении к объекту конструируемого понятия" (B744). Следует обратить внимание на точность кантовского выражения: "тотчас спешит перейти к наглядному представлению". В самом деле, сразу после формулировки общего утверждения начинается конструирование чувственно созерцаемого предмета. Иными словами происходит актуализация того, что в protasis фигурировало только как возможное. В ekqesis она (актуализация) в известном смысле беспроблемна, т.к. конструируется то понятие, возможность которого уже установлена. Здесь лишь воспроизводится синтез, проведенный ранее, поэтому мы имеем в распоряжении регулярный способ предъявления единичного предмета, соответствующего данному понятию (в нашем случае - понятию треугольника).
Детерминация выделяет в структуре единичной конструкции, предъявленной в экспозиции, определенные конструктивные элементы - те, о которых пойдет речь в последующем рассуждении. Эта часть теоремы как бы повторяет protasis. Она также носит гипотетический характер. Но предполагается в ней не возможность понятия, а действительность конструкции. Теперь мы говорим только о единичном предмете, который уже начали конструировать. Важно, что, формулируя интересующее нас свойство, мы уже имеем перед глазами часть создаваемой конструкции. Говоря, "сумма углов 1, 2 и 3 равняется двум прямым," мы видим то, о чем говорим. Здесь мы имеем в виду непосредственно представленный, данный в восприятии, т.е. действительный объект. Этот объект - след действия, произведенного нами ранее (в экспозиции).
Построение есть прямое продолжение экспозиции. К уже существующему (нами созданному) объекту мы добавляем новые конструктивные элементы. Каждый новый элемент добавляется в соответствии с уже известной теоремой или постулатом. (Последние, напомним, можно рассматривать как элементарные выполнимые операции или правила построения.) В нашем случае, впрочем, построение сводится к единственному акту - проведению через вершину B прямой, параллельной основанию. Но сколь проста ни была бы проводимая нами операция, она имеет ключевое значение для всей процедуры доказательства теоремы. Именно сейчас мы произвели конструкцию, полностью коррелятивную понятию, возможность которого требуется установить. Единичный объект, полученный в ходе построения и представленный на рисунке (в тексте настоящего параграфа), есть актуализация этого понятия. На этом рисунке сумма внутренних углов треугольника изображена так, что ее равенство двум прямым становится непосредственно видимым.
Есть один очень важный момент, отличающий дополнительное построение от экспозиции. Построение треугольника в соответствии со схемой понятия треугольника означало подведение единичного объекта под общее правило. Если это общее правило (понятие треугольника) задано рассудком, то подведение подразумевает действие определяющей способности суждения. Но для той конструкции, которая была создана при дополнительном построении, у нас еще не было соответствующего понятия. То понятие, возможность которого предполагается в утверждении теоремы, не имеет еще под собой никакой схемы, никакого конкретного правила построения. Это правило необходимо изобрести, причем изобрести так, чтобы из него выводилось утверждение теоремы. Иными словами, дополнительное построение требует действия рефлектирующей способности суждения. Создаваемая конструкция (равно как и правило, по которому она создается) есть обобщающая догадка, есть та общая структура, в рамках которой становятся ясными интересующие нас отношения ранее построенных объектов. Все они находят свое место в объединяющей их конфигурации и конструирование каждого отдельного элемента становится целесообразным. Следовательно, только благодаря рефлектирующей способности суждения возможен синтез понятия в теореме.